Saturday, September 29, 2007

Any Digital Camera Can Take Multibillion-pixel Shots With New Device


Source:

Science Daily — Researchers at Carnegie Mellon University, in collaboration with scientists at NASA's Ames Research Center, have built a low-cost robotic device that enables any digital camera to produce breathtaking gigapixel (billions of pixels) panoramas, called GigaPans.
The technology gives people a new way to make and share images of their environment. It is being used by students to document their communities and by the Commonwealth of Pennsylvania to make Civil War sites accessible on the Web. To promote further sharing of this imagery, Carnegie Mellon has launched a public Web site, http://www.gigapan.org/, where people can upload and interactively explore panoramic images of any format.
In cooperation with Google, researchers also have created a GigaPan layer on Google Earth. Anyone using Google Earth can now fly into these GigaPan panoramas in the context of exploring the world.
Researchers have begun a public beta process with the GigaPan hardware, Web site, and software. The hardware technology enabling GigaPan images is a robotic camera mount, jointly designed and manufactured by Charmed Labs of Austin Texas. The tripod-like mount makes it possible for a digital camera to take hundreds of overlapping images of landscapes, buildings or rooms. Then, using software developed by Carnegie Mellon and Ames, these images can be arranged in a grid and digitally stitched together into a single image that could consist of tens of billions of pixels.
These huge image files can then be explored by zooming in on features of interest in a manner similar to Google Earth. "We have taken imagery and made it a new tool for exploration and for enhancing global understanding," said Illah Nourbakhsh, associate professor in the School of Computer Science's Robotics Institute. Nourbakhsh and Randy Sargent, senior systems scientist at Carnegie Mellon West in Moffett Field, Calif., led GigaPan's development. "An ordinary photo makes it possible to cross language barriers," Nourbakhsh explained. "But a GigaPan provides so much information that it leads to conversations between the person who took the panoramas and the people who are exploring it and discovering new details."
Last spring, the Pennsylvania Board of Tourism began to use GigaPan to enable people to virtually explore Civil War sites. The technology is also being used for Robot250, an arts-based robotics program in the Pittsburgh area. Robot250 will increase technical literacy by teaching students, artists and other members of the public how to build customized robots.
Nourbakhsh and his colleagues recently began to work with UNESCO's International Bureau of Education and its Associated Schools Network on a project that will link school children in different parts of the world in exploring issues of cultural identity through a classroom project. Middle school children from Pittsburgh to South Africa to Trinidad and Tobago will use the GigaPan camera to share images of their neighborhoods, lives and cultures. "This project will explore curriculum development from the local to the global level," said IBE Director Clementina Acedo.
"It is an extraordinary opportunity to link a school-community based educational practice with high-end technology in the service of children's innovative learning, personal development and world communication. Plans call for the experiences of these children from poorer and richer countries to be presented at the 48th session of the International Conference of Education scheduled to take place in Geneva in November 2008.
Besides being a tool for education, Nourbakhsh and Sargent see the GigaPan system as an important tool for ecologists, biologists and other scientists. They plan to foster this effort by making several dozen GigaPans available to leading scientists with support from the Fine Foundation of Pittsburgh.
Nourbakhsh hopes the non-commercial GigaPan site will help to develop a community of GigaPan producers and users. "We're not interested in becoming just another photo-sharing site," he said. "We want as many people as possible involved. GigaPan is not just about the vision of the person who makes the image. People who explore the image can make discoveries and gain insights in ways that may be just as important."
Sargent got the idea for GigaPan when he was a technical staff member at Ames Research Center, helping to develop software for combining images from NASA's Mars Exploration Rovers into panoramas. He became convinced that the same technology could open people's eyes to the diversity of their own planet. "It is increasingly important to give people a broad view of the world, particularly to help us understand different cultures and different environments," he said. "It's too easy to have blinders on and to only see and understand what is local."
The GigaPan camera system is part of a larger effort known as the Global Connection Project, led by Nourbakhsh and Sargent. Its purpose is to make people all over the world more aware of their neighbors.
Note: This story has been adapted from material provided by Carnegie Mellon University.

Fausto Intilla

Friday, September 28, 2007

Quantum Device Traps, Detects And Manipulates The Spin Of Single Electrons


Source:

Science Daily — A novel device, developed by a team led by University at Buffalo engineers, simply and conveniently traps, detects and manipulates the single spin of an electron, overcoming some major obstacles that have prevented progress toward spintronics and spin-based quantum computing.
Published online recently in Physical Review Letters, the research paper brings closer to reality electronic devices based on the use of single spins and their promise of low-power/high-performance computing.
"The task of manipulating the spin of single electrons is a hugely daunting technological challenge that has the potential, if overcome, to open up new paradigms of nanoelectronics," said Jonathan P. Bird, Ph.D., professor of electrical engineering in the UB School of Engineering and Applied Sciences and principal investigator on the project. "In this paper, we demonstrate a novel approach that allows us to easily trap, manipulate and detect single-electron spins, in a scheme that has the potential to be scaled up in the future into dense, integrated circuits."
While several groups have recently reported the trapping of a single spin, they all have done so using quantum dots, nanoscale semiconductors that can only demonstrate spin trapping in extremely cold temperatures, below 1 degree Kelvin.
The cooling of devices or computers to that temperature is not routinely achievable, Bird said, and it makes systems far more sensitive to interference.
The UB group, by contrast, has trapped and detected spin at temperatures of about 20 degrees Kelvin, a level that Bird says should allow for the development of a viable technology, based on this approach.
In addition, the system they developed requires relatively few logic gates, the components in semiconductors that control electron flow, making scalability to complex integrated circuits very feasible.
The UB researchers achieved success through their innovative use of quantum point contacts: narrow, nanoscale constrictions that control the flow of electrical charge between two conducting regions of a semiconductor.
"It was recently predicted that it should be possible to use these constrictions to trap single spins," said Bird. "In this paper, we provide evidence that such trapping can, indeed, be achieved with quantum point contacts and that it may also be manipulated electrically."
The system they developed steers the electrical current in a semiconductor by selectively applying voltage to metallic gates that are fabricated on its surface.
These gates have a nanoscale gap between them, Bird explained, and it is in this gap where the quantum point contact forms when voltage is applied to them.
By varying the voltage applied to the gates, the width of this constriction can be squeezed continuously, until it eventually closes completely, he said.
"As we increase the charge on the gates, this begins to close that gap," explained Bird, "allowing fewer and fewer electrons to pass through until eventually they all stop going through. As we squeeze off the channel, just before the gap closes completely, we can detect the trapping of the last electron in the channel and its spin."
The trapping of spin in that instant is detected as a change in the electrical current flowing through the other half of the device, he explained.
"One region of the device is sensitive to what happens in the other region," he said.
Now that the UB researchers have trapped and detected single spin, the next step is to work on trapping and detecting two or more spins that can communicate with each other, a prerequisite for spintronics and quantum computing.
Co-authors on the paper are Youngsoo Yoon, Ph.D., a UB doctoral student in electrical engineering; L. Mourokh of Queens College and the College of Staten Island of the City University of New York; T. Morimoto, N. Aoki and Y. Ochiai of Chiba University in Japan; and J. L. Reno of Sandia National Laboratories.
The research was funded by the U.S. Department of Energy. Bird, who also has received funding from the UB Office of the Vice President for Research, was recruited to UB with a faculty recruitment grant from the New York State Office of Science, Technology and Academic Outreach (NYSTAR).
Note: This story has been adapted from material provided by University at Buffalo.

Fausto Intilla

Nanowire Generates Power By Harvesting Energy From The Environment


Source:

Science Daily — As the sizes of sensor networks and mobile devices shrink toward the microscale, and even nanoscale, there is a growing need for suitable power sources. Because even the tiniest battery is too big to be used in nanoscale devices, scientists are exploring nanosize systems that can salvage energy from the environment.
Now, researchers at the University of Illinois have shown that a single nanowire can produce power by harvesting mechanical energy. Made of piezoelectric material, the nanowire generates a voltage when mechanically deformed. To measure the voltage produced by such a tiny wire, however, the researchers first had to build an extremely sensitive and precise mechanical testing stage.
"With the development of this precision testing apparatus, we successfully demonstrated the first controlled measurement of voltage generation from an individual nanowire," said Min-Feng Yu, a professor of mechanical science and engineering, and a researcher at the university's Beckman Institute. "The new testing apparatus makes possible other difficult, but important, measurements, as well."
Yu and graduate students Zhaoyu Wang, Jie Hu, Abhijit Suryavanshi and Kyungsuk Yum describe the measurement, and the measurement device, in a paper accepted for publication in the journal Nano Letters, and posted on the journal's website.
The nanowire was synthesized in the form of a single crystal of barium titanate, an oxide of barium and titanium used as a piezoelectric material in microphones and transducers, and was approximately 280 nanometers in diameter and 15 microns long.
The precision tensile mechanical testing stage is a finger-size device consisting of two coplanar platforms -- one movable and one stationary -- separated by a 3-micron gap. The movable platform is driven by a single-axis piezoelectric flexure stage with a displacement resolution better than 1 nanometer.
When the researchers' piezoelectric nanowire was placed across the gap and fastened to the two platforms, the movable platform induced mechanical vibrations in the nanowire. The voltage generated by the nanowire was recorded by high-sensitivity, charge-sensing electronics.
"The electrical energy produced by the nanowire for each vibrational cycle was 0.3 attojoules (less than one quintillionth of a joule)," Yu said. "Accurate measurements this small could not be made on nanowires before."
While the researchers created mechanical deformations in the nanowire through vibrations caused by external motion, other vibrations in the environment, such as sound waves, should also induce deformations. The researchers' next step is to accurately measure the piezoelectric nanowire's response to those acoustic vibrations.
"In addition, because of the fine precision offered by the mechanical testing stage, it should also be possible to quantitatively compare the intrinsic properties of the nanowire to those of the bulk material," Yu said. "This will allow us to study the scale effect related to electromechanical coupling in nanoscale systems."
Funding was provided by the National Science Foundation. Part of the work was carried out in the University's Center for Microanalysis of Materials, which is partially supported by the U.S. Department of Energy.
Note: This story has been adapted from a news release issued by University of Illinois at Urbana-Champaign.

Fausto Intilla

Sunday, September 23, 2007

Robot For Lunar Prospecting Under Development


Source:

Science Daily — Researchers in the Robotics Institute of Carnegie Mellon University's School of Computer Science are building a robotic prospector for NASA that can creep over rocky slopes and then anchor itself as a stable platform for drilling deep into extraterrestrial soils.
Called "Scarab," this four-wheeled robot will never leave the Earth. But it will demonstrate technologies that a lunar rover will need to find concentrations of hydrogen, possibly water and other volatile chemicals on the moon that could be mined to produce fuel, water and air that are essential for supporting lunar outposts.
Scarab is equipped with a Canadian-made drill for obtaining meter-long geological core samples and features a novel rocker-arm suspension that enables the robot to plant its belly on the ground for drilling operations.
"A lunar prospector will face a hostile environment in the perpetual darkness of craters at the moon's southern pole, where ground temperatures are minus 385 degrees and no energy source is at hand," said William "Red" Whittaker, the Fredkin Research Professor and principal investigator of the NASA-funded project. "It's a place where humans can't work effectively, but where Scarab will thrive, even while operating on the electrical power required to illuminate a 100-watt light bulb."
Robotic prospecting on the moon poses substantial, sometimes conflicting challenges. Scarab must be agile enough to travel miles over sandy, rock-strewn soil, but also serve as a stable drilling platform. Operating for months in total darkness, it cannot rely on solar energy or batteries for power. Instead it will use a radioisotope source that places a premium on energy efficiency. To navigate in total darkness, Scarab must rely on new, low-power, laser-based sensors.
"As a consequence of the power restrictions, it's not very speedy," said David Wettergreen, associate research professor of robotics and leader of Scarab's software and autonomy development. With a top speed of just four inches per second, Scarab tries the patience of even the most laid-back observer. When faced with particularly large obstacles or drilling tasks, it may pause to store up extra power.
To optimize efficiency, the robot must be as light as possible. But to operate the coring drill, the vehicle also has to be massive enough to apply sufficient downward pressure on the drill and counter the torque of the rotating drill. Researchers estimate it must weigh at least 250 kilograms, or about 550 pounds.
The suspension allows Scarab to make the most of its weight by enabling it to lower its 5 1/2-foot-by-3-foot body to the ground for drilling operations. "One of the design innovations was to put the drill in the center of the robot," Wettergreen said, rather than attaching it to an arm. "Scarab can apply its entire mass onto the drill, so that everything is assisting the drilling operation."
The suspension also makes it possible for Scarab to raise its body as much as 21 inches off the ground, so it can straddle rocks or lean as it negotiates steep slopes.
"It's a good combination vehicle that does two things very well," said John Caruso, project manager at NASA's Glenn Research Center in Cleveland. "Scarab is successful because it achieves the design simplicity of a single-purpose machine while accomplishing the multiple purposes of driving and drilling in darkness."
Also important is that the vehicle has been developed as an integrated package based on the requirements of an entire prospecting mission, Caruso said. NASA hasn't announced such a mission as yet, he noted, but developing the technology now will ultimately lower the technical risk for such an undertaking. Glenn Research Center is developing radioisotope power sources for deep space and lunar applications.
The drill is being built by the Northern Centre For Advanced Technology Inc. in Sudbury, Ontario, and will be capable of processing and analyzing the geologic cores it obtains.
Researchers at NASA's Ames Research Center are collaborating to evaluate navigational sensors and algorithms for operation in darkness, such as a "light striper" being built at Carnegie Mellon that detects obstructions by shining laser beams and then looking for distortions in the beams.
Researchers at the Robotics Institute have been working since March to build the robot and develop its autonomous navigation and scientific software. The carbon-composite body was designed and built by a team of engineers headed by John Thornton, a student who also builds streamlined racers featured in Carnegie Mellon's annual Buggy Races.
Development work continues on software that can use all of Scarab's motions to best advantage and enable it to navigate autonomously in the dark. A field experiment planned for the end of the year will put driving and drilling in the dark together in a complete demonstration of the lunar mission concept.
The project is funded through NASA's Johnson Space Center in Houston and its In-situ Resource Utilization program.
Whittaker has announced that he is assembling a team to compete for the Google Lunar X-Prize and its $20 million grand prize for operating a privately funded robot on the moon by 2012. That effort is separate and distinct from the NASA-funded Scarab project, which is developing technologies that could be used on the moon but are being tested on Earth.
Note: This story has been adapted from a news release issued by Carnegie Mellon University.

Fausto Intilla

Friday, September 21, 2007

Nanomaterials With A Bright Future


Source:

Science Daily — An innovative and inexpensive way of making nanomaterials on a large scale has resulted in novel forms of advanced materials that pave the way for exceptional and unexpected optical properties.
The new fabrication technique, known as soft lithography, or SIL, offers many significant advantages over existing techniques, including the ability to scale-up the manufacturing process to produce devices in large quantities.
The optical nanomaterials in this research are called 'plasmonic metamaterials' because their unique physical properties originate from shape and structure rather than material composition only. Two examples of metamaterials in the natural world are peacock feathers and butterfly wings. Their brightly colored patterns are due to structural variations at the hundreds of nanometers level, which cause them to absorb or reflect light.
Through the development of a new nanomanufacturing technique, Odom and her co-workers have succeeded in making gold films with virtually infinite arrays of perforations as small as 100 nanometers--500-1000 times smaller than a human hair. On a magnified scale, these perforated gold films look like Swiss cheese except the perforations are well-ordered and can spread over macroscale distances. The researchers' ability to make these optical metamaterials inexpensively and on large wafers or sheets is what sets this work apart from other techniques.
"One of the biggest problems with nanomaterials has always been their 'scalability,'" Odom said. "It's been very difficult or prohibitively expensive to pattern them over areas larger than about one square millimeter. This research is exciting not only because it demonstrates a new type of patterning technique that is cheap, but also one that can produce very high quality optical materials with interesting properties."
For example, if the perforations or holes are patterned into microscale "patches," they show dramatically different transmission behavior of light compared to an infinite array of holes. The patches appear to focus light while the infinite arrays do not.
Moreover, their optical transmission can be altered simply by changing the geometry of perforations rather than having to "cook" a new composition of materials. This feature makes them very attractive in terms of tuning their behavior to a given need with ease. These materials can also be superior as optical sensors, and they open the possibility of ultra-small sources of light. Furthermore, given their precise organization, they can serve as templates for making their own clones or for making other ordered structures at the nanoscale, such as arrays of nanoparticles.
"The work of Professor Odom is an outcome of a grant mechanism at NSF called Small Grants for Exploratory Research that is aimed at exploring high-risk, high-payoff ideas that are potentially transformative to the field said Harsh Deep Chopra, director of NSF's Metals Program in the Division of Materials Research. "The early results are encouraging and suggest the potential for a new generation of optical devices." This work is supported both the Metals Program and the Materials Research Science and Engineering Centers Program in the Division of Materials Research at NSF.
The research, funded by the National Science Foundation (NSF) and led by Teri Odom of Northwestern University, appears in the September 2007 issue of Nature Nanotechnology.
Note: This story has been adapted from a news release issued by National Science Foundation.

Fausto Intilla

Thursday, September 20, 2007

Toward Next-generation Integrated Circuits Made From Carbon Nanotubes


Source:

Science Daily — Scientists in Israel are reporting the first simple and inexpensive method for building the large-scale networks of single-walled carbon nanotubes (SWCNT) needed for using these microscopic wisps in a future generation of faster, smaller, and more powerful computers and portable electronic devices.
In a study scheduled for the Sept. 12 issue of ACS' Nano Letters Yael Hanein and colleagues point out that no assembly method has solved all of the key problems involved in fabrication of large networks. Those problems range from aligning SWCNTs in a preset pattern to integrating carbon nanotube circuits into an integrated circuit environment similar to those at the heart of conventional microprocessors.
The study describes a method to manufacture and assemble large arrays of SWCNTs into an integrated circuit format. It can be used on a variety of surfaces and produced on an industrial scale. The process involves creating networks of nanotubes suspended between silicon pillars, which are then transferred onto other surfaces by direct stamping, the researchers say.
Article: "A Complete Scheme for Creating Predefined Networks of Individual Carbon Nanotubes"
Note: This story has been adapted from a news release issued by American Chemical Society.

Fausto Intilla

New Backpack 'Exoskeleton' Lightens The Burden In An Unexpected Way


Source:

Science Daily — Researchers in the MIT Media Lab's Biomechatronics Group have created a device to lighten the burden for soldiers and others who carry heavy packs and equipment.
Their invention, known as an exoskeleton, can support much of the weight of a heavy backpack and transfer that weight directly to the ground, effectively taking a load off the back of the person wearing the device.
The researchers report that their prototype can successfully take on 80 percent of an 80-pound load carried on a person's back, but there's one catch: The current model impedes the natural walking gait of the person wearing it.
"You can definitely tell it's affecting your gait," said Conor Walsh, a graduate student who worked on the project, but "you do feel it taking the load off and you definitely feel less stress on your upper body."
The research team was led by Hugh Herr, principal investigator of the Biomechatronics Group and associate professor in the MIT Media Lab. Earlier this summer, Herr and his colleagues unveiled the world's first robotic ankle for lower-limb amputees.
Eventually Herr hopes to create assistive leg devices that can be useful for anyone. Herr said he envisions leg exoskeletons that could help people run without breathing hard, as well as help to carry heavy loads.
"Our dream is that 20 years from now, people won't go to bike racks--they'll go to leg racks," he said.
Exoskeleton devices could boost the weight that a person can carry, lessen the likelihood of leg or back injury and reduce the perceived level of difficulty of carrying a heavy load.
The person wearing the exoskeleton places his or her feet in boots attached to a series of tubes that run up the leg to the backpack, transferring the weight of the backpack to the ground. Springs at the ankle and hip and a damping device at the knee allow the device to approximate the walking motion of a human leg, with a very small external power input (one watt).
Other research teams have produced exoskeleton devices that can successfully carry a load but require a large power source (about 3,000 watts, supplied by a gasoline engine).
When the MIT researchers tested their device, they found that although the load borne by the wearer's back was lightened, the person carrying the load had to consume 10 percent more oxygen than normal, because of the extra effort to compensate for the gait interference.
The team hopes to revise the design so the exoskeleton more closely mimics the movement of a human leg, allowing for more normal walking motion. The most important result of this study, says Walsh, is that the team's spring-based, low-energy design shows promise.
"This is the first time that it has been tested," he said. "We didn't know what to expect."
This research is reported in the September issue of the International Journal of Humanoid Robotics.
The research was funded by the Defense Advanced Research Projects Agency.
Note: This story has been adapted from a news release issued by Massachusetts Institute of Technology.

Fausto Intilla
www.oloscience.com