Monday, September 28, 2009

Swimming Robot Makes Waves At Bath.

ScienceDaily (Sep. 25, 2009) — Researchers at the University of Bath have used nature for inspiration in designing a new type of swimming robot which could bring a breakthrough in submersible technology.
Conventional submarine robots are powered by propellers that are heavy, inefficient and can get tangled in weeds.
In contrast ‘Gymnobot', created by researchers from the Ocean Technologies Lab in the University's Department of Mechanical Engineering, is powered by a fin that runs the length of the underside of its rigid body; this undulates to make a wave in the water which propels the robot forwards.
The design, inspired by the Amazonian knifefish, is thought to be more energy efficient than conventional propellers and allows the robot to navigate shallow water near the sea shore.
Gymnobot could be used to film and study the diverse marine life near the seashore, where conventional submersible robots would have difficulty manoeuvring due to the shallow water with its complex rocky environment and plants that can tangle a propeller.
Dr William Megill, Lecturer in Biomimetics at the University of Bath, explained: "The knifefish has a ventral fin that runs the length of its body and makes a wave in the water that enables it to easily swim backwards or forwards in the water.
"Gymnobot mimics this fin and creates a wave in the water that drives it forwards. This form of propulsion is potentially much more efficient than a conventional propeller and is easier to control in shallow water near the shore."
Keri Collins, a postgraduate student who developed the Gymnobot as part of her PhD, added: "We hope to observe how the water flows around the fin in later stages of the project. In particular we want to look at the creation and development of vortices around the fin.
"Some fish create vortices when flicking their tails one way but then destroy them when their tails flick back the other way. By destroying the vortex they are effectively re-using the energy in that swirling bit of water. The less energy left in the wake when the fish has passed, the less energy is wasted.
"It will be particularly interesting to see how thrust is affected by changing the wave of the fin from a constant amplitude to one that is tapered at one end."
The lab was recently awarded a grant to work with six other European institutions to create a similar robot that reacts to water flow and is able to swim against currents.
In addition to studying biodiversity near the shore and in fast-flowing rivers, robots like Gymnobot could also be used for detecting pollution in the environment or for inspecting structures such as oil rigs.
The project was funded by BMT Defence Services and the Engineering & Physical Sciences Research Council.
Adapted from materials provided by
University of Bath, via AlphaGalileo.

Sunday, September 20, 2009

The Interoperable Telesurgical Protocol.


ScienceDaily (Sep. 18, 2009) — Using a new software protocol called the Interoperable Telesurgical Protocol, nine research teams from universities and research institutes around the world recently collaborated on the first successful demonstration of multiple biomedical robots operated from different locations in the U.S., Europe, and Asia. SRI International operated its M7 surgical robot for this demonstration.
In a 24-hour period, each participating group connected over the Internet and controlled robots at different locations. The tests performed demonstrated how a wide variety of robot and controller designs can seamlessly interoperate, allowing researchers to work together easily and more efficiently. In addition, the demonstration evaluated the feasibility of robotic manipulation from multiple sites, and was conducted to measure time and performance for evaluating laparoscopic surgical skills.
New Interoperable Telesurgical Protocol The new protocol was cooperatively developed by the University of Washington and SRI International, to standardize the way remotely operated robots are managed over the Internet.
"Although many telemanipulation systems have common features, there is currently no accepted protocol for connecting these systems," said SRI's Tom Low. "We hope this new protocol serves as a starting point for the discussion and development of a robust and practical Internet-type standard that supports the interoperability of future robotic systems."
The protocol will allow engineers and designers that usually develop technologies independently, to work collaboratively, determine which designs work best, encourage widespread adoption of the new communications protocol, and help robotics research to evolve more rapidly. Early adoption of this protocol internationally will encourage robotic systems to be developed with interoperability in mind, and avoid future incompatibilities.
"We're very pleased with the success of the event in which almost all of the possible connections between operator stations and remote robots were successful. We were particularly excited that novel elements such as a simulated robot and an exoskeleton controller worked smoothly with the other remote manipulation systems," said Professor Blake Hannaford of the University of Washington.
The demonstration included the following organizations:
SRI International, Menlo Park, Calif., USA
University of Washington Biorobotics Lab (BRL), Seattle, Washington, USA
University of California at Santa Cruz (UCSC), Bionics Lab, Santa Cruz, Calif., USA
iMedSim, Interactive Medical Simulation Laboratory, Rensselaer Polytechnic Institute, Troy, New York, USA
Korea University of Technology (KUT) BioRobotics Lab, Cheonan, South Chungcheong, South Korea
Imperial College London (ICL), London, England
Johns Hopkins University (JHU), Baltimore, Maryland, USA
Technische Universität München (TUM), Munich, Germany
Tokyo Institute of Technology (TOK), Tokyo, Japan
For more information regarding availability of the Interoperable Telesurgical Protocol, please visit:
http://brl.ee.washington.edu/Research_Active/Interoperability/index.php/Main_Page
Adapted from materials provided by SRI International.